
MATH 245 F19, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction, floor, Proof by Reindexed
Induction.

The Proof by Contradiction Theorem states: Let p, q be propositions. If (p∧¬q) ≡ F ,
then p → q is true. Let x ∈ R. Then there is a unique integer n, called the floor of
x, satisfying n ≤ x < n + 1. To prove the proposition ∀x ∈ N, P (x) by (reindexed)
induction, we must (a) prove that P (1) is true; and (b) prove that ∀x ∈ N with x ≥ 2,
P (x− 1)→ P (x).

2. Carefully define the following terms: Proof by Strong Induction, Fibonacci numbers,
recurrence.

To prove the proposition ∀x ∈ N, P (x) by strong induction, we must (a) prove that
P (1) is true; and (b) prove that ∀x ∈ N, P (1) ∧ P (2) ∧ · · · ∧ P (x) → P (x + 1). The
Fibonacci numbers are a sequence given by F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2 (k ≥ 2).
A recurrence is a sequence with the property that all but finitely many of its terms are
defined in terms of its previous terms.

3. Let a, b ∈ Z with b ≥ 1. Use minimum element induction to prove ∃q, r ∈ Z with
a = bq + r and 0 < r ≤ b.

Let S = {m ∈ Z : m ≥ a
b
− 1}, which is a nonempty set of integers. It has lower bound

a
b
− 1, so by minimum element induction it must have a minimum element, which we

call q. Since q ∈ S, we have q ∈ Z and q ≥ a
b
− 1. Hence bq ≥ a− b, which rearranges

to b ≥ a− bq. Set r = a− bq; by the above calculation b ≥ r. Since q was minimal in
S, q − 1 /∈ S. Since q ∈ Z we must have q − 1 < a

b
− 1, or q < a

b
. We have qb < a,

which rearranges to 0 < a− bq = r. Combining, we have 0 < r ≤ b.

4. Let x ∈ R. Prove that bxc is unique; that is, prove that there is at most one n ∈ Z with
n ≤ x < n + 1.

Suppose there were two integers n, n′, satisfying n ≤ x < n+1 and also n′ ≤ x < n′+1.
Combining n ≤ x with x ≤ n′ + 1, we get n < n′ + 1. Combining n′ − 1 ≤ x− 1 with
x− 1 < n, we get n′ − 1 < n. Hence, we have n′ − 1 < n < n′ + 1. By a theorem from
the book (1.12d), we must have n = n′.

5. Prove that, for every n ∈ N,
∑n

i=1
1

i(i+1)
= n

n+1
.

We prove by (ordinary) induction. The base case is n = 1: we have
∑1

i=1
1

i(i+1)
=

1
1(1+1)

= 1
2

= n
n+1

. Now, let n ∈ N be arbitrary, and assume that
∑n

i=1
1

i(i+1)
= n

n+1
. We

add the next term, 1
(n+1)(n+2)

, to both sides, getting
∑n+1

i=1
1

i(i+1)
= n

n+1
+ 1

(n+1)(n+2)
=

n(n+2)
(n+1)(n+2)

+ 1
(n+1)(n+2)

= n2+2n+1
(n+1)(n+2)

= (n+1)2

(n+1)(n+2)
= n+1

n+2
, as desired.



6. Solve the recurrence with a0 = 2, a1 = 5, and relation an = 2an−1 − an−2 (n ≥ 2).

The characteristic polynomial is r2 − 2r + 1 = (r − 1)2. Hence we have a double root
r = 1, and general solution an = A1n + Bn1n = A + Bn. Turning now to the initial
conditions, we have 2 = a0 = A + B · 0 = A, and 5 = a1 = A + B · 1 = A + B. Hence
A = 2 and B = 3, giving specific solution an = 2 + 3n.

7. Suppose that an algorithm has runtime specified by recurrence relation Tn = 5Tn/2 + n2.
Determine what, if anything, the Master Theorem tells us.

In the notation of the Master Theorem, we have a = 5, b = 2, cn = n2. We have
cn = Θ(n2), so k = 2. We set d = logb a = log2 5. Without a calculator, we can’t find
d exactly, but we know that 2 = log2 4 < d < log2 8 = 3. Hence 2 < d < 3, and in
particular d > k. Hence we are in the “small cn” case, and the Master Theorem tells
us that Tn = Θ(nd) = Θ(nlog2 5).

8. Prove or disprove: ∀n ∈ Z, !m ∈ N, n = m(4−m).

The statement is false. To disprove, we prove ¬∀n ∈ Z, !m ∈ N, n = m(4−m), which
is equivalent to ∃n ∈ Z,∃m1,m2 ∈ N, n = m1(4 −m1) ∧ n = m2(4 −m2) ∧m1 6= m2.
Take n = 3,m1 = 1,m2 = 3. We have m1 6= m2, and n = 3 = 1(4− 1) = 3(4− 3).

9. Prove that n2 − n = Θ(n2).

(easier part) We prove n2 − n = O(n2). Take n0 = 1,M = 1. For all n ≥ n0,
0 ≤ n and hence −n ≤ 0. Adding n2 to both sides, we get n2 − n ≤ n2, and thus
|n2 − n| = n2 − n ≤ n2 = M |n2|.
(harder part) We prove n2 − n = Ω(n2). Take n0 = 2,M = 2. Let n ≥ n0 = 2.
Multiplying by n, we get n2 ≥ 2n. Adding n2, we get 2n2 ≥ n2 + 2n. Rearranging, we
get 2n2 − 2n ≥ n2. Hence, M |n2 − n| = 2(n2 − n) ≥ n2 = |n2|.

10. Prove that
√

5 is irrational.

We argue by contradiction. Suppose that
√

5 were rational. Then we would have
m,n ∈ Z, with n 6= 0, and

√
5 = m

n
. By cancelling any common factors, we may

assume that m,n have no common factors. Squaring and rearranging gives 5n2 = m2.
Now, 5|m2, and 5 is prime, so 5|m (or 5|m). Write m = 5k, for some integer k, and
substitute back. We get 5n2 = (5k)2 = 25k2. Hence n2 = 5k2. Now 5|n2, and 5 is still
prime, so 5|n. Hence, m,n both have the common factor 5, a contradiction.


