MATH 245 F19, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction, floor, Proof by Reindexed
Induction.

The Proof by Contradiction Theorem states: Let p, ¢ be propositions. If (pA—q) = F,
then p — ¢ is true. Let x € R. Then there is a unique integer n, called the floor of
x, satisfying n < x < n+ 1. To prove the proposition Vo € N, P(x) by (reindexed)
induction, we must (a) prove that P(1) is true; and (b) prove that Vo € N with > 2,
Pz —1) = P(x).

2. Carefully define the following terms: Proof by Strong Induction, Fibonacci numbers,
recurrence.

To prove the proposition Vo € N, P(x) by strong induction, we must (a) prove that
P(1) is true; and (b) prove that Vo € N, P(1) A P(2) A--- A P(z) — P(x 4+ 1). The
Fibonacci numbers are a sequence given by Fy =0, Fy = 1, F, = Fy_1 + Fy_o (k> 2).
A recurrence is a sequence with the property that all but finitely many of its terms are
defined in terms of its previous terms.

3. Let a,b € Z with b > 1. Use minimum element induction to prove dq,r € Z with
a=0bg+rand 0 <r <D

Let S = {m € Z : m > § — 1}, which is a nonempty set of integers. It has lower bound
% — 1, so by minimum element induction it must have a minimum element, which we
call g. Since q € S, we have ¢ € Z and ¢ > § — 1. Hence bq > a — b, which rearranges
to b > a — bq. Set r = a — bq; by the above calculation b > r. Since ¢ was minimal in
S,q—1¢ 5. Since ¢ € Z we must have ¢ —1 < § —1, or ¢ < 7. We have ¢b < a,
which rearranges to 0 < a — bg = r. Combining, we have 0 < r <'b.

4. Let z € R. Prove that |z] is unique; that is, prove that there is at most one n € Z with
n<zr<n+l.
Suppose there were two integers n, n/, satisfying n < x < n+1and alson’ < x <n'+1.
Combining n < z with x < n' + 1, we get n <n’ 4+ 1. Combining ' — 1 < z — 1 with
r—1<n,wegetn —1<n. Hence, we have n’ — 1 < n < n’+ 1. By a theorem from
the book (1.12d), we must have n = n'.

5. Prove that, for every n € N, > z(z—l—l) =5

We prove by (ordmary) induction. The base case is n = 1: we have Z
L =1= Now, let n € N be arbitrary, and assume that » ",
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6. Solve the recurrence with ag = 2,a; = 5, and relation a,, = 2a,,_1 — a,_2 (n > 2).

The characteristic polynomial is r* — 2r +1 = (r — 1)?. Hence we have a double root
r = 1, and general solution a,, = A1™ + Bnl™ = A + Bn. Turning now to the initial
conditions, we have 2=aqy=A+B-0=A,and 5=a; =A+ B-1= A+ B. Hence
A =2 and B = 3, giving specific solution a,, = 2 + 3n.

7. Suppose that an algorithm has runtime specified by recurrence relation T,, = 5T}, /2 + n*.
Determine what, if anything, the Master Theorem tells us.

In the notation of the Master Theorem, we have a = 5,b = 2,¢, = n?. We have
cn = 0O(n?), so k =2. We set d = log, a = log, 5. Without a calculator, we can’t find
d exactly, but we know that 2 = log,4 < d < log,8 = 3. Hence 2 < d < 3, and in
particular d > k. Hence we are in the “small ¢,” case, and the Master Theorem tells
us that T,, = O(n?) = O(nl°s25).

8. Prove or disprove: Vn € Z, !m € N;n = m(4 — m).

The statement is false. To disprove, we prove =Vn € Z, !m € N;n = m(4 —m), which
is equivalent to In € Z,3Imy,my € Nyn = my(4 — mq) An = ma(4 — msg) A my # ma.
Take n = 3,m; = 1,my = 3. We have m; # my, and n =3 =1(4 — 1) = 3(4 — 3).

9. Prove that n? —n = O(n?).

(easier part) We prove n* —n = O(n?). Take ng = 1,M = 1. For all n > ny,
0 < n and hence —n < 0. Adding n? to both sides, we get n> — n < n?, and thus
In? —n| =n?—n<n?= Mn?|

(harder part) We prove n? — n = Q(n?). Take ng = 2,M = 2. Let n > ny = 2.

Multiplying by n, we get n? > 2n. Adding n?, we get 2n? > n? + 2n. Rearranging, we
get 2n% — 2n > n? Hence, M|n? — n| = 2(n*? —n) > n? = |n?|.

10. Prove that /5 is irrational.

We argue by contradiction. Suppose that /5 were rational. Then we would have
m,n € Z, with n # 0, and V5 = 7. By cancelling any common factors, we may
assume that m,n have no common factors. Squaring and rearranging gives 5n% = m?.
Now, 5|m?, and 5 is prime, so 5|m (or 5|m). Write m = 5k, for some integer k, and
substitute back. We get 5n* = (5k)? = 25k%. Hence n? = 5k*. Now 5|n?, and 5 is still
prime, so 5|n. Hence, m,n both have the common factor 5, a contradiction.



