MATH 245 F19, Exam 2 Solutions

1. Carefully define the following terms: Proof by Contradiction, floor, Proof by Reindexed Induction.
The Proof by Contradiction Theorem states: Let p, q be propositions. If $(p \wedge \neg q) \equiv F$, then $p \rightarrow q$ is true. Let $x \in \mathbb{R}$. Then there is a unique integer n, called the floor of x, satisfying $n \leq x<n+1$. To prove the proposition $\forall x \in \mathbb{N}, P(x)$ by (reindexed) induction, we must (a) prove that $P(1)$ is true; and (b) prove that $\forall x \in \mathbb{N}$ with $x \geq 2$, $P(x-1) \rightarrow P(x)$.
2. Carefully define the following terms: Proof by Strong Induction, Fibonacci numbers, recurrence.
To prove the proposition $\forall x \in \mathbb{N}, P(x)$ by strong induction, we must (a) prove that $P(1)$ is true; and (b) prove that $\forall x \in \mathbb{N}, P(1) \wedge P(2) \wedge \cdots \wedge P(x) \rightarrow P(x+1)$. The Fibonacci numbers are a sequence given by $F_{0}=0, F_{1}=1, F_{k}=F_{k-1}+F_{k-2}(k \geq 2)$. A recurrence is a sequence with the property that all but finitely many of its terms are defined in terms of its previous terms.
3. Let $a, b \in \mathbb{Z}$ with $b \geq 1$. Use minimum element induction to prove $\exists q, r \in \mathbb{Z}$ with $a=b q+r$ and $0<r \leq b$.
Let $S=\left\{m \in \mathbb{Z}: m \geq \frac{a}{b}-1\right\}$, which is a nonempty set of integers. It has lower bound $\frac{a}{b}-1$, so by minimum element induction it must have a minimum element, which we call q. Since $q \in S$, we have $q \in \mathbb{Z}$ and $q \geq \frac{a}{b}-1$. Hence $b q \geq a-b$, which rearranges to $b \geq a-b q$. Set $r=a-b q$; by the above calculation $b \geq r$. Since q was minimal in $S, q-1 \notin S$. Since $q \in \mathbb{Z}$ we must have $q-1<\frac{a}{b}-1$, or $q<\frac{a}{b}$. We have $q b<a$, which rearranges to $0<a-b q=r$. Combining, we have $0<r \leq b$.
4. Let $x \in \mathbb{R}$. Prove that $\lfloor x\rfloor$ is unique; that is, prove that there is at most one $n \in \mathbb{Z}$ with $n \leq x<n+1$.
Suppose there were two integers n, n^{\prime}, satisfying $n \leq x<n+1$ and also $n^{\prime} \leq x<n^{\prime}+1$. Combining $n \leq x$ with $x \leq n^{\prime}+1$, we get $n<n^{\prime}+1$. Combining $n^{\prime}-1 \leq x-1$ with $x-1<n$, we get $n^{\prime}-1<n$. Hence, we have $n^{\prime}-1<n<n^{\prime}+1$. By a theorem from the book (1.12d), we must have $n=n^{\prime}$.
5. Prove that, for every $n \in \mathbb{N}, \sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$.

We prove by (ordinary) induction. The base case is $n=1$: we have $\sum_{i=1}^{1} \frac{1}{i(i+1)}=$ $\frac{1}{1(1+1)}=\frac{1}{2}=\frac{n}{n+1}$. Now, let $n \in \mathbb{N}$ be arbitrary, and assume that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$. We add the next term, $\frac{1}{(n+1)(n+2)}$, to both sides, getting $\sum_{i=1}^{n+1} \frac{1}{i(i+1)}=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=$ $\frac{n(n+2)}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)}=\frac{n^{2}+2 n+1}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2}$, as desired.
6. Solve the recurrence with $a_{0}=2, a_{1}=5$, and relation $a_{n}=2 a_{n-1}-a_{n-2}(n \geq 2)$.

The characteristic polynomial is $r^{2}-2 r+1=(r-1)^{2}$. Hence we have a double root $r=1$, and general solution $a_{n}=A 1^{n}+B n 1^{n}=A+B n$. Turning now to the initial conditions, we have $2=a_{0}=A+B \cdot 0=A$, and $5=a_{1}=A+B \cdot 1=A+B$. Hence $A=2$ and $B=3$, giving specific solution $a_{n}=2+3 n$.
7. Suppose that an algorithm has runtime specified by recurrence relation $T_{n}=5 T_{n / 2}+n^{2}$. Determine what, if anything, the Master Theorem tells us.

In the notation of the Master Theorem, we have $a=5, b=2, c_{n}=n^{2}$. We have $c_{n}=\Theta\left(n^{2}\right)$, so $k=2$. We set $d=\log _{b} a=\log _{2} 5$. Without a calculator, we can't find d exactly, but we know that $2=\log _{2} 4<d<\log _{2} 8=3$. Hence $2<d<3$, and in particular $d>k$. Hence we are in the "small c_{n} " case, and the Master Theorem tells us that $T_{n}=\Theta\left(n^{d}\right)=\Theta\left(n^{\log _{2} 5}\right)$.
8. Prove or disprove: $\forall n \in \mathbb{Z},!m \in \mathbb{N}, n=m(4-m)$.

The statement is false. To disprove, we prove $\neg \forall n \in \mathbb{Z},!m \in \mathbb{N}, n=m(4-m)$, which is equivalent to $\exists n \in \mathbb{Z}, \exists m_{1}, m_{2} \in \mathbb{N}, n=m_{1}\left(4-m_{1}\right) \wedge n=m_{2}\left(4-m_{2}\right) \wedge m_{1} \neq m_{2}$. Take $n=3, m_{1}=1, m_{2}=3$. We have $m_{1} \neq m_{2}$, and $n=3=1(4-1)=3(4-3)$.
9. Prove that $n^{2}-n=\Theta\left(n^{2}\right)$.
(easier part) We prove $n^{2}-n=O\left(n^{2}\right)$. Take $n_{0}=1, M=1$. For all $n \geq n_{0}$, $0 \leq n$ and hence $-n \leq 0$. Adding n^{2} to both sides, we get $n^{2}-n \leq n^{2}$, and thus $\left|n^{2}-n\right|=n^{2}-n \leq n^{2}=M\left|n^{2}\right|$.
(harder part) We prove $n^{2}-n=\Omega\left(n^{2}\right)$. Take $n_{0}=2, M=2$. Let $n \geq n_{0}=2$. Multiplying by n, we get $n^{2} \geq 2 n$. Adding n^{2}, we get $2 n^{2} \geq n^{2}+2 n$. Rearranging, we get $2 n^{2}-2 n \geq n^{2}$. Hence, $M\left|n^{2}-n\right|=2\left(n^{2}-n\right) \geq n^{2}=\left|n^{2}\right|$.
10. Prove that $\sqrt{5}$ is irrational.

We argue by contradiction. Suppose that $\sqrt{5}$ were rational. Then we would have $m, n \in \mathbb{Z}$, with $n \neq 0$, and $\sqrt{5}=\frac{m}{n}$. By cancelling any common factors, we may assume that m, n have no common factors. Squaring and rearranging gives $5 n^{2}=m^{2}$. Now, $5 \mid m^{2}$, and 5 is prime, so $5 \mid m$ (or $5 \mid m$). Write $m=5 k$, for some integer k, and substitute back. We get $5 n^{2}=(5 k)^{2}=25 k^{2}$. Hence $n^{2}=5 k^{2}$. Now $5 \mid n^{2}$, and 5 is still prime, so $5 \mid n$. Hence, m, n both have the common factor 5 , a contradiction.

